

Advanced Agronomic Practices to Maximize Wheat and Feed Barley Yields and Harvestability

PARTIN, PLANNER

Sheri Strydhorst, PhD Research Scientist – Agronomy Alberta Agriculture and Rural Development

The Role for Crop Scientists in Feeding the World

- Wheat provides 20% of humanity's total calories¹
- World population to stabilize in 2050 at 9B²
- The predicted increase in:
 - Wheat demand = 1.7% per yr³
 - Wheat productivity = 1.1% per year³
 - Western Canadian productivity increasing at 1.4% per yr⁴
- Need to increase cereal yields from 3.2t/ha to 4.3t/ha⁵
- How ???²
 - Some increases in cultivated land
 - Bridging current yield gaps
 - Breeding stress resilient varieties
 - Increase yield potential of current varieties via breeding
 - Adopt improved crop management practices and intensive agriculture


¹FAO, 2010. FAOSTAT 2010. Available at

²Singh, B.B. (2013) World food security in the 21st century: challenges and opportunities for crop scientists. ASA, CSSA & SSSA International Annual Meetings. Tampa, Florida. Nov 3-6, 2013.
 ³Rosegrant and Agcaoili. 2010. Global Food Demand, Supply and Price Prospects to 2010. International Food Policy Research Institute, Washington, DC, USA.
 ⁴Thomas and Graf. 2014. Rates of yield gain of hard red spring wheat in western Canada. CJPS. 94:1-13.
 ⁵Bruinsma. 2009. How to Feed the World in 2050. FAO Expert Meeting, June 24-26, 2009. Rome.

Background

- Increased wheat yields are attributed to:
 - Breeding (21% in Asia and Latin America¹; 28% in NW Mexico²; 90% in the UK³). i.e. Semi-dwarfs, disease resistance.
 - Improved agronomic practices (33%-48% in NW Mexico^{2,3}). i.e. Fertilizer, irrigation, mechanization, early seeding, weed management.
- 10yr provincial average for spring wheat 44.9 bu/acre⁴ (2.4t/ha)

 ¹Evanson and Gollin, 2003.Assessing the Impact of the Green Revolution, 1960 to 2000. Science. 300: 758-762.
 ²Evans and Fischer, 1999. Yield Potential: Its Definition, Measurement, and Significance. Crop Science. 39:1544-1551.
 ³Fischer and Edmeades, 2010. Breeding and Cereal Yield Progress. Crop Science. 50:S85-S98.
 ⁴Alberta Agriculture and Rural Development. Source: Statistics Canada. 2014. Alberta 2013 Crop Season in Review. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sdd4191.

Advanced Agronomic Practices -Background

Supplemental Urea Ammonium Nitrate (UAN)

- To maximize yield, N fertilizer should be available at the time of maximum crop uptake.
 - In cereal crops, this is from the start of elongation until heading (Bauer et al., 1987).
 - Delayed N applications (at anthesis) tend to increase grain protein content without increasing yield (Rawluk et al., 2000).
- Karamanos et al. (2005) found post-emergent N applications could increase Hard Red Spring (HRS) wheat yields in high moisture or irrigated conditions.

Alberta

Bauer, A., Frank, A. B. and Black, A. L. 1987. Aerial parts of hard red spring wheat. I. Dry matter distribution by plant development stage. Agron. J. 79: 845-852.
Karamanos, R. E., Flore N. A. and Harapiak, J. T. 2005. Effect of post-emergence nitrogen application on

the yield and protein content of wheat. Can. J. Plant Sci. 85: 327–342. Rawluk, C. D. L., Racz, G. J. and Grant, C. A. 2000. Uptake of foliar or soil application of 15N-labelled

urea solution at anthesis and its affect on wheat grain yield and protein. Can. J. Plant Sci. 80: 331-334

Plant Growth Regulators (PGRs)

- In western Canada, Manipulator was recently registered (for wheat) and a 2nd PGR is in the process of registration (for wheat).
- These PGRs produce shorter (2-15cm), thicker & stronger stems which reduce lodging in intensive management systems (Syngenta, 2013; Taminco, 2013).
- The primary use of PGRs is as a harvest management aid.

Syngenta. 2013. Palisade2EC Label. Accessed November 27, 2013. Available online at: http://www.syngentacropprotection.com/Labels/p-1197/Palisade_2EC Taminco. 2013. Manipulator Technical Data Sheet. Accessed November 27, 2013. Available online at: http://www.taminco.com/

Foliar Fungicides

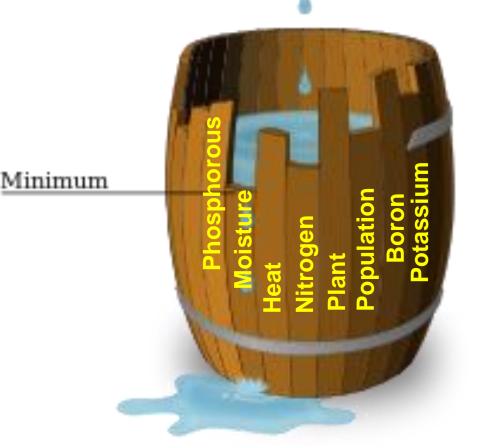
- Foliar fungicides increase wheat yields by 5.5-44%. Largest increases on cultivars with less genetic resistance to fungal pathogens (Ransom & McMullen, 2008).
- In-crop fungicide applications must protect the upper canopy leaves to permit a longer period of grain filling, leading to higher grain yield, kernel weight, plumpness & test weight (Turkington et al., 2011a).

Ransom, J.K. and M.V. McMullen. 2008. Yield and disease control on hard winter wheat cultivars with foliar fungicides. Agron. J. 100: 1130-1137. Turkington, T.K., H.R. Kutcher, K. Xi, K.N. Harker, J.T. O'Donovan. 2011a. The impact of fungicide and herbicide timing on barley leaf disease severity, weed management and crop productivity. Abstract. The American Phytopathological Society Meetings in Honolulu, Hawaii, August 6-10, 2011.

Seeding Rate

- Yields are often stable over a wide range of seeding rates, but in some instances yield increases are observed
- High seeding rates:
 - Accelerate maturity
 - Reduce tiller number per plant

Desired plant population						
	per square meter	per square foot (range)				
Barley 2 row	210	22 (16 - 30)				
Barley 6 row	210	22 (16 - 30)				



Alberta

Jedel and Helm, 1994. Agronomic response to seeding rate of two- and six-rowed barley cultivars in central Alberta. CJPS. 75: 315-320. http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex81?opendocument#target

Liebig's Law of the Minimum

"Growth is controlled not by the total amount of resources available, but by the scarcest resource (limiting factor)."

http://en.wikipedia.org/wiki/Liebig's_law_of_the_minimum

Basic Agronomic Practices

- Direct seed into canola stubble
- Vibrance XL seed treatment
- High target seeding rate 35 plants/ft²
- Heat + Glyphosate pre-seed burnoff
- Seeding as early as possible
- Early weed control with Stellar + Axial
- Fungicide applied with 80L/ac water volume

Systems Approach to Testing Agronomic Practices

- The yield & agronomic benefits associated with advanced agronomic practices have been studied.
- However, there is very limited research testing the COMBINED EFFECTS of these agronomic practices.
 - Ontario research found that combined agronomic practices had synergistic yield benefits (Johnson, 2013).
 - Olesen et al. (2003) found enhanced disease under high N fertilizer rates, emphasizing the need to test fungicides under varying rates of N fertilizer.
- This research uses a systems approach to pin-point combinations of agronomic practices that result in the largest synergistic yield, agronomic & economic benefits.

Johnson, P. 2013. Breaking Yield Barriers – the Production Package to Hit 150 bu/ac Wheat. FarmTech 2013. Olesen, J.E., J.V. Mortensen, J. Petersen, and L.N. Jorgensen. 2003. Effects of rates and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 2. Crop growth and disease development. Journal of Agricultural Science. 140:15-29.

Advanced Agronomic Practices in Wheat, Barley and Pea to Maximize Yield and Harvestability

Financial Support of this Research is Provided By:

Field Crop Development Centre KL Nelson and KWS – UK Kittle Farms Ltd. Lefsrud Seed & Processors Ltd.

University of Alberta Westlock Seed Cleaning Co-op Ltd.

Objectives

1.Using a systems approach, determine synergistic benefits of stacking multiple agronomic practices: PGRs; supplemental UAN; Agrotain; and/or foliar fungicides to increase yields & economic returns of wheat & feed barley.

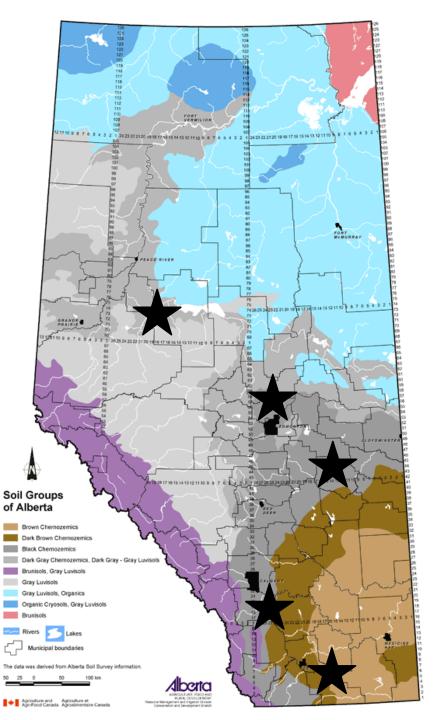
2.Compare small plot results from objective 1 with "Wheat 150" & "Barley 180" field scale trials to develop statistical tools to allow producers to effectively analyze field research.

3. Determine if wheat or feed barley cultivars respond differently to the intensive agronomic practices listed in objective 1.

4. Using a systems approach, determine which agronomic practices (PGRs, inter-row seeding) improve field pea harvestability.

5. Determine the benefits of various fungicide modes of action & application timings for use on feed barley.

Aberta


When?

• 3 years (2014-2016)

Where?

- Magrath (irrigated)
- High River
- Killam
- Bon Accord
- Fahler

Aberta Prepared by Laurel Perrott, MSc. Student

Precipitation - 2014

	Magrath		High	River	Kill	am	Bon Accord		Falher	
	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches
May	33	1.3	57	2.2	24	0.9	40	1.6	18	0.7
June	221	8.7	130	5.1	106	4.2	60	2.4	50	2.0
July	67	2.6	28	1.1	54	2.1	40	1.6	28	1.1
August	58	2.3	35	1.4	40	1.6	13	0.5	4	0.2
Sept	46	1.8	75	3.0	39	1.5	42	1.7	0	0.0
Total	425	16.7″	325	12.8″	263	10.4″	194	7.6″	101	4.0″
LTA	226	8.9"	245	9.6″	258	10.2	295	11.6"	238	9.4"
Soil Moisture @ Seeding _(0- 6'')					22%		29%		Good/excellent	
Seeding Date†	May 15	, 2014	May 21, 2014		May 16, 2014		May 8, 2014		May 20, 2014	
Harvest Date	Sept 16	, 2014	Sept 17	, 2014	Sept 23	3, 2014	Sept 19	9, 2014	Sept 6	5, 2014

Growing Degree Days - 2014

	Magrath	High River	Killam	Bon Accord	Falher
May	136	89	114	148	81
June	225	231	259	280	284
July	431	383	387	410	414
August	380	337	348	372	374
September	86	77	145	113	42
Total	1257	1116	1252	1322	1203
Long Term Average	1276	1094	1267	1249	1024
Seeding Date	May 15	May 21	May 16	May 8	May 20
Harvest Date	Sept 16	Sept 17	Sept 23	Sept 19	Sept 6

Alberta

Wheat Stacked Management (comparing 48 management practices)

Yield Response

Comparing 48 management practices

	UAN C	UAN C ONLY	CC	CCC + Fungicide @ Time A	CCC + Fungicide @ Time B	CCC + Fungicide @ Time A+B	PGRB	PGRB + Fungicide @ Time A	PGR B + Fungicide @ Time B	PGR B + Fungicide @ Time A+B	Fungicide @ Time A	Fungicide @ Time B	Fungicide @ Time A+B
		1	2	3	4	5	6	7	8	9	10	11	12
		137	138	139	140	141	142	143	144	145	146	147	148
	UAN B	UAN B ONLY	222	CCC + Fungicide @ Time A	CCC + Fungicide @ Time B	CCC + Fungicide @ Time A+B	PGR B	PGR B + Fungicide @ Time A	PGR B + Fungicide @ Time B	PGR B + Fungicide @ Time A+B	Fungicide @ Time A	Fungicide @ Time B	Fungicide @ Tīme A+B
		1	2	3	4	5	6	7	8	9	10	11	12
		125	126	127	128	129	130	131	132	133	134	135	136
	Ξ.												
	UAN A	UAN A ONLY	CCC	CCC + Fungicide @ Time A	CCC + Fungicide @ Time B	CCC + Fungicide @ Time A+B	P GR B	PGR B + Fungicide @ Tīme A	PGRB+ Fungicide @ Time B	PGR B + Fungicide @ Time A+B	Fungicide @ Time A	Fungicide @ Tīme B	Fungicide @ Time A+B
	UAN A	1 UAN A ONLY	ບ 2	CCC + Fungicide @ Time A	CCC + Fungicide @ Time B	CCC + Fungicide @ Time A+B	9 6 8	PGR B + Fungicide @ Time A	PGRB+ 8 Fungicide @ Time B	PGRB+ 6 Fungicide @ Time A+B	Fungicide @ Time A	Fungicide @ Time B	Fungicide @ Time A+B
	UAN A												
REP 1	0 UAN UANA	1	2	3	4	5	6	7	8	9	10	11	12
REP 1	ļ	1 113	2 114	3 115	4 116	5 117	6 118	7 119	8 120	9 121	10 122	11 123	12 124

Alberta

Advanced Agronomic Management Treatments

In – Crop UAN		
Treatment	Rate	Timing
UAN 1.25x Yield Goal	30 lbs N/ac	Just prior to GS 30 (just before elongation)
UAN 1.25x + Agrotain	30 lbs N/ac + 3.4 mL Agrotain /lb UAN	- June 13 th in Bon Accord
UAN 1.5x Yield Goal	60 lbs N/ac	
PGR x Fungicide Trea	atments	
PGR – CCC	0.73 L/ac (wheat)	GS 30-32 - June 18 th in Bon Accord
PGR B	2.0 L/ac (wheat only)	
1 st Foliar Fungicide Twinline	202 mL/ac	GS 39 Flag leaf fully unrolled - July 2 nd , Bon Accord
2 nd Foliar Fungicide Prosaro	320 mL/ac	Head Emerge ~ 2 weeks later - July 15 th , Bon Accord

Alberta

Fertilizer Applied at Seeding - Wheat

Location	Ν	P ₂ O ₅	K ₂ 0	S	Cu
Magrath	120 Ibs N/ac* 100 Ibs N/ac applied in fall 2013 20 Ibs N/ac applied at seeding	49 lbs P ₂ O ₅ /ac	n/a	n/a	n/a
High River	85 lbs N/ac	22 lbs P ₂ O ₅ /ac	n/a	n/a	n/a
Killam – CPS, SWS, GP	81 lbs N/ac	25 lbs P_2O_5/ac	20 lbs K ₂ O/ac	5 lbs S/ac	n/a
Killam – HRS	90 lbs N/ac	25 lbs P_2O_5/ac	20 lbs K ₂ O/ac	5 lbs S/ac	n/a
Bon Accord – CPS, SWS, GP	96 lbs N/ac	50 lbs P_2O_5/ac	40 lbs K_2O/ac	n/a	n/a
Bon Accord – HRS	126 lbs N/ac	50 lbs P ₂ O ₅ /ac	40 lbs K ₂ O/ac	n/a	n/a
Falher	93 lbs N/ac	59 lbs P ₂ O ₅ /ac	18 lbs K ₂ O/ac	13 lbs S/ac	n/a

Yield Targets for: Standard & Advanced Agronomic Management

	Magrath	High River	Killam I	Bon Accord	alher
			bu/acre	\sim	
HRS 1.0 x	90	45	65	79	60
HRS 1.25 x	113	56	81	99	75
HRS 1.5 x	135	68	98	119	90
CPS 1.0 x	100	55	80	87	75
CPS 1.25 x	125	69	100	109	94
CPS 1.5 x	150	83	120	130	113
SWS 1.0 x	112	77	75	98	83
SWS 1.25 x	139	96	94	123	104
SWS 1.5 x	167	115	113	147	124
Feed Barley 1.0 x	110	80	100	86	81
Feed Barley 1.25 x	138	100	125	107	101
Feed Barley 1.5 x	165	120	150	128	121
Malt Barley 1.0 x	110	70	90	97	83

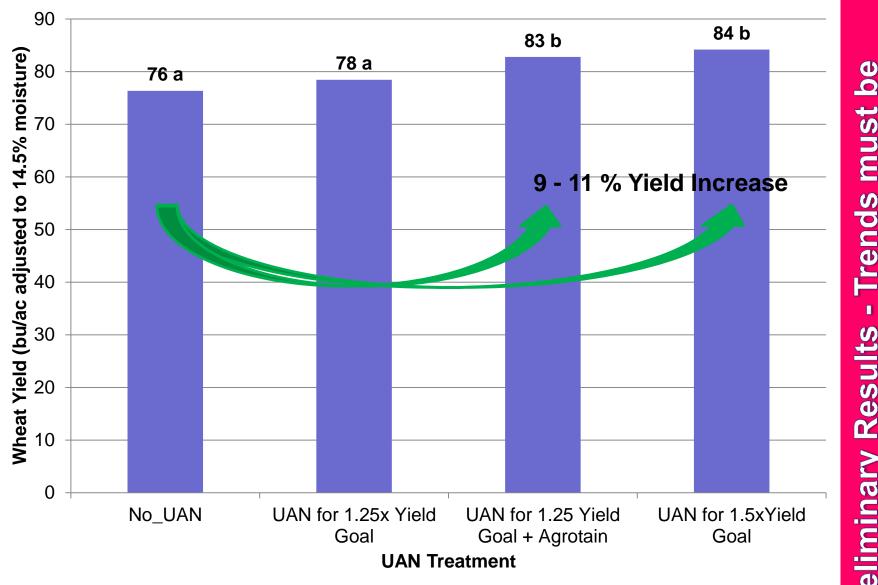
Wheat Stacked Management – Yield Response

comparison of 48 different management practices

	Lethbridge	High River	Killam	Bon Accord	Falher
Average Yield	115 bu/ac	80 bu/ac	119 bu/ac	94 bu/ac	70 bu/ac
			ANOVA F test		
UAN	<0.0001	<0.0001	0.1646	0.5364	<0.0001
Treatment [†]	<0.0001	<0.0001	<0.0001	<0.0001	0.0114
UAN * Treatment [†]	0.6792	0.9455	0.6156	0.8781	0.9975
			Contrast F test		
No PGR vs PGR	0.1564	0.2627	0.1483	0.0614	0.1253
No Fungicide vs Fungicide	<0.0001	<0.0001	<0.0001	0.0211	0.5805
PGR vs PGR + Fungicide	<0.0001	<0.0001	<0.0001	<0.0001	0.1021
CV %	3.7%	8.0%	5.8%	6.5%	10.5%

⁺ Treatment = the 12 PGR x Fungicide treatment combinations

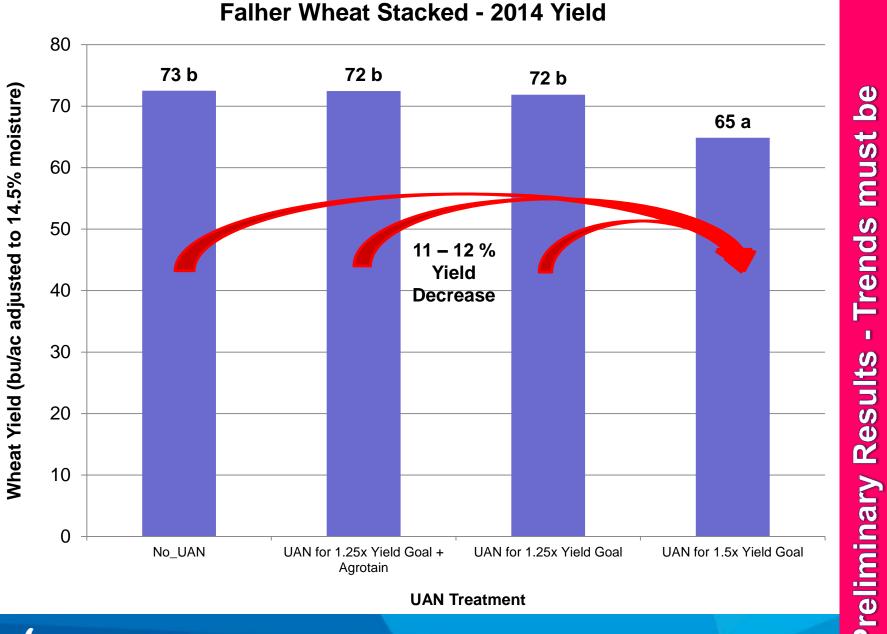
berta


Alberta

Wheat Stacked Management (comparing 48 management practices)

Yield Response to UAN

Positive Yield Response at 2 of 5 sites (Lethbridge – Irrigated; High River) Negative Yield Response at 1 of 5 sites (Falher)

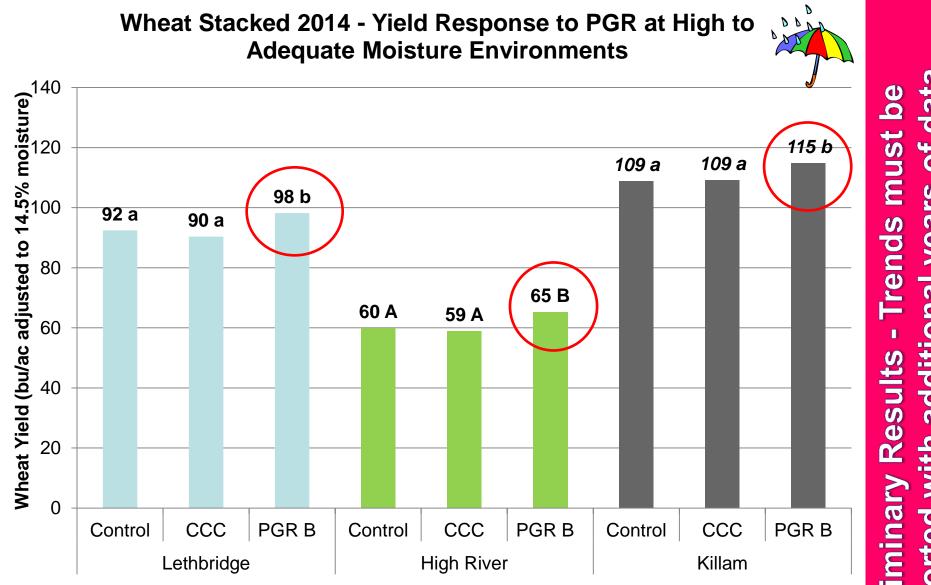


High River Wheat Stacked - 2014 Yield

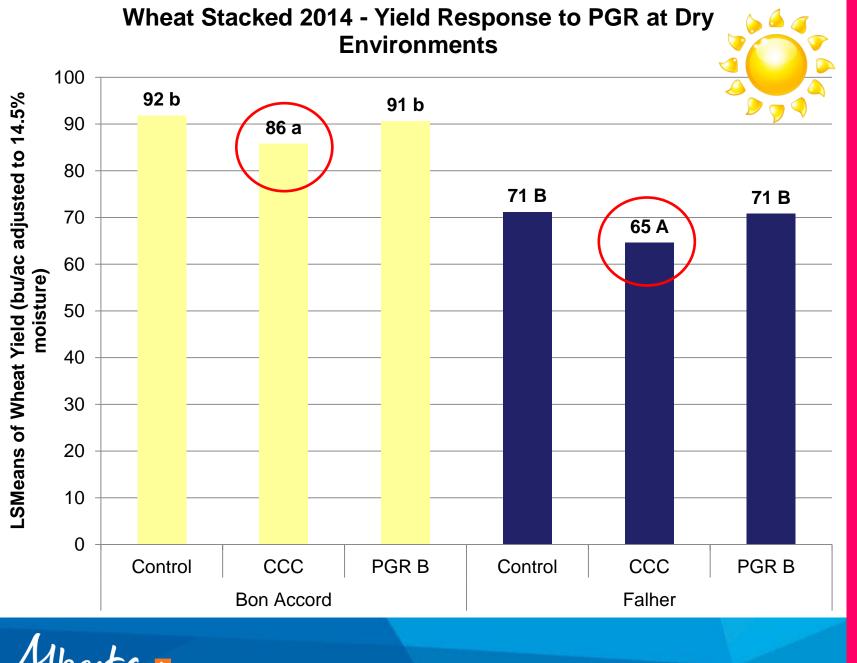
Alberta

supported with additional years of data **Preliminary Results - Trends must be**

of data Preliminary Results - Trends must be supported with additional years


Wheat Stacked Management

Yield Response to PGR


Significant Yield Responses at all locations

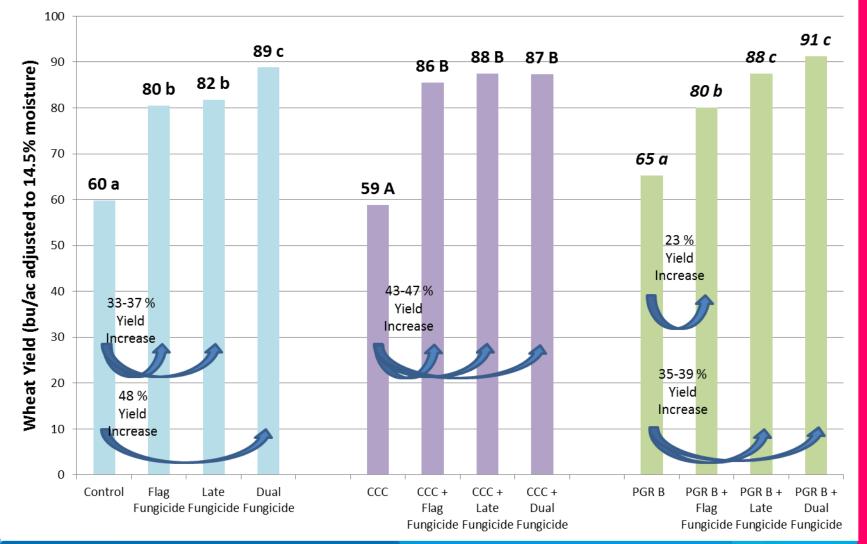
PGR B had significantly higher yields in high moisture environments CCC had significantly lower yields in dry environments

of data supported with additional years **Preliminary Results**

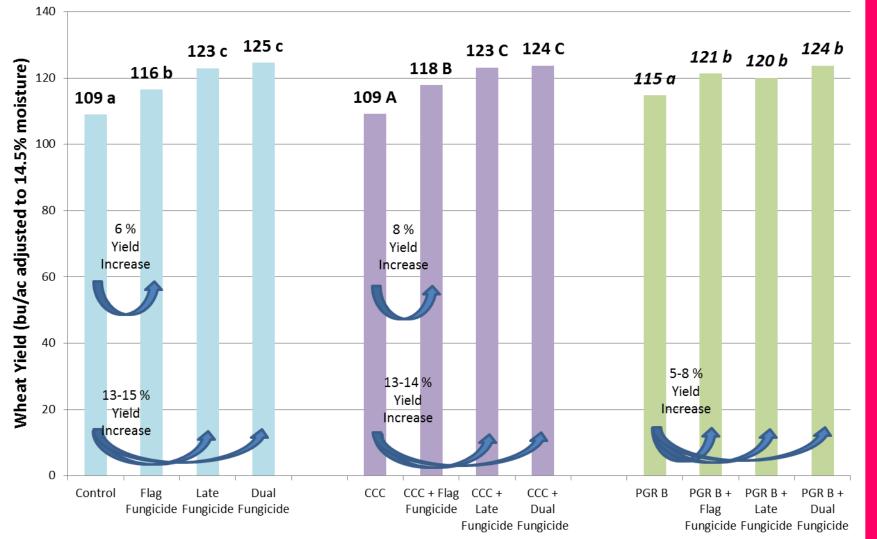
supported with additional years of data **Preliminary Results - Trends must be**

Alberta

Wheat Stacked Management


Yield Response to Fungicide Treatments • Positive Yield Response at 4 of 5 sites (Lethbridge, High River, Killam, Bon Accord)

Yield Response to PGR x Fungicide Treatments Positive Yield Response at 4 of 5 sites


• (Lethbridge, High River, Killam, Bon Accord)

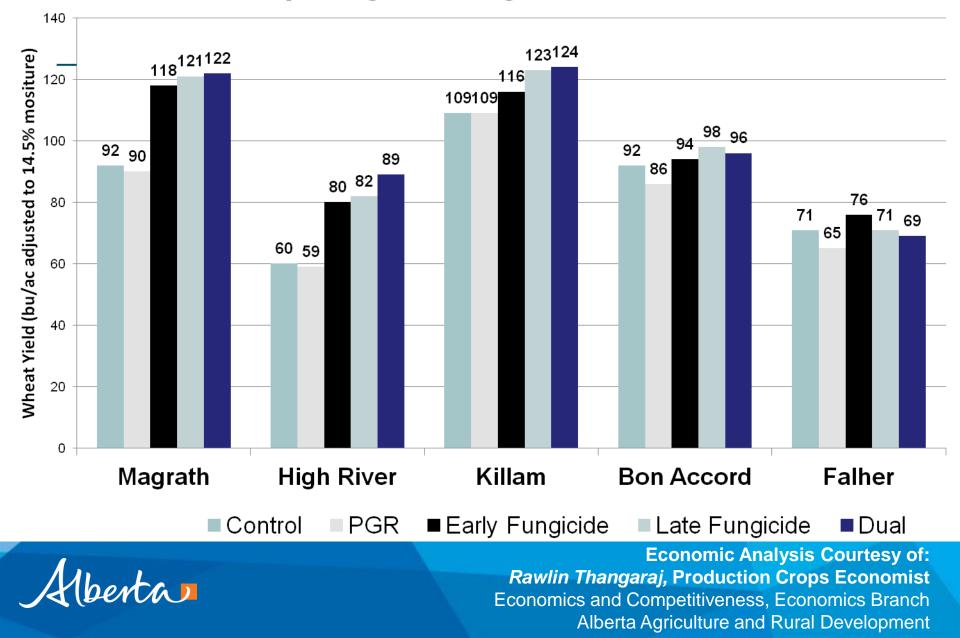
of data - Trends must be supported with additional years **Preliminary Results**

Wheat Stacked 2014 - Yield Response to PGR x Fungicide Treatments - Killam

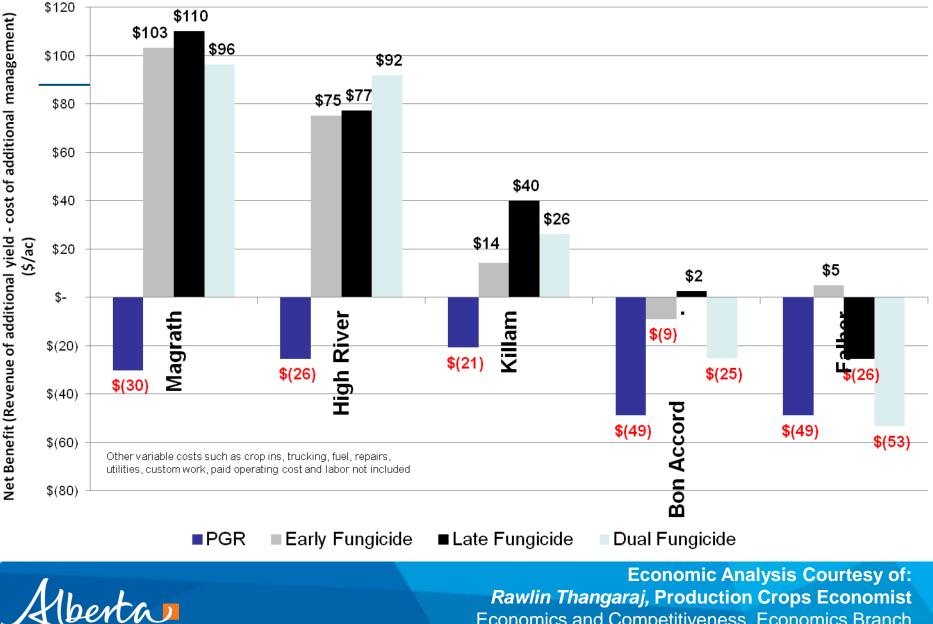
of data - Trends must be supported with additional years **Preliminary Results**

Wheat Stacked Management

Comparing PGR, Early Fungicide, Late Fungicide and Dual Fungicide vs Control


In high moisture environments (Lethbridge, High River & Killam) Early Fungicide, Late Fungicide and Dual Fungicide were all profitable

In dry environments (Bon Accord & Falher)

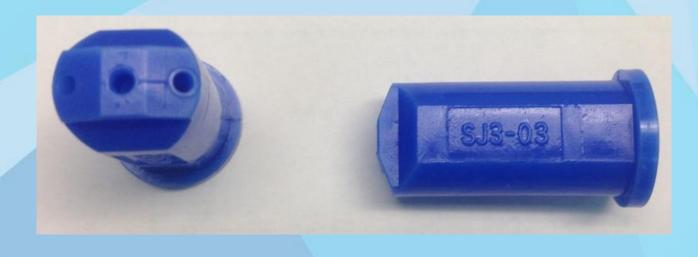

Most management practices resulted in a net loss.

PGR applications resulted in a net loss at all locations

Wheat Stacked Management Yields @ 5 locations - Comparing 5 Management Practices

Net Economic Benefit - Wheat @ \$4.68/bu

Economics and Competitiveness, Economics Branch Alberta Agriculture and Rural Development



Wheat Stacked Management Trends

•UAN

4-11% yield increase with 60 lbs N/ac @ 2 sites
11% yield decrease with 60 lbs N/ac @ Falher – dry site

Wheat Stacked Management Trends

• PGR

- In high moisture environments
 - PGR B resulted in a 4 8% yield increase vs control
- In dry environments
 - CCC resulted in a 7 8% yield decrease vs control

Wheat Stacked Management Trends

Fungicide

- In moist environments (Lethbridge and High River):
 - Single fungicide applications increased yields by 28-37%
 - Dual fungicide applications increased yields by 33-48%
- In slightly drier environments (Killam):
 - Fungicide increased yields between 6-15%

Wheat Genetics x Management

Yield Response

Standard Verses Advanced Management

Standard Agronomic Management

Product	Rate	Timing
Supplemental UAN	n/a	Only N applied at seeding for area average yield goals
PGR	n/a	n/a
Foliar Fungicide	n/a	n/a

Advanced Agronomic Management

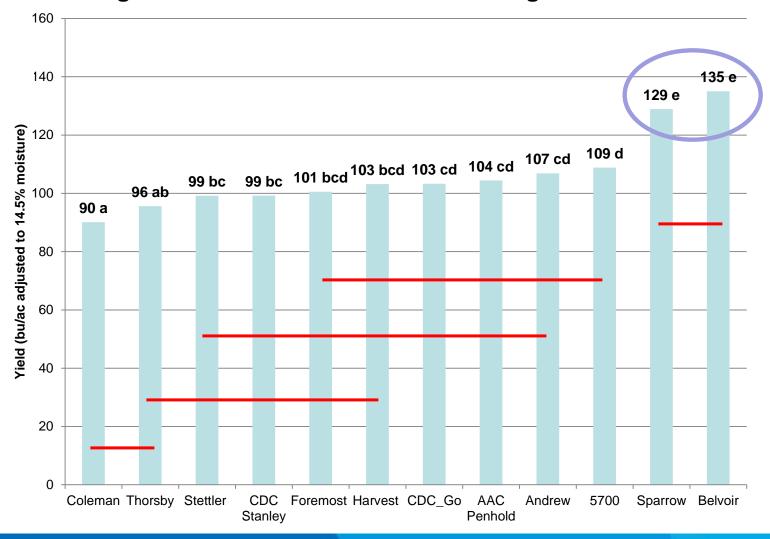
Product	Rate	Timing
Supplemental UAN	30 lbs N/ac	Just prior to GS 30 (just before elongation). June 13 th in Bon Accord
PGR - Manipulator	0.73 L/ac	GS 30-31. June 18 th in Bon Accord
1 st Foliar Fungicide Twinline	202 mL/ac	GS 39 Flag leaf fully unrolled. July 2 nd , Bon Accord
2 nd Foliar Fungicide Prosaro	320 mL/ac	2 weeks later . July 15 th , Bon Accord

Alberta

12 Wheat Cultivars Tested

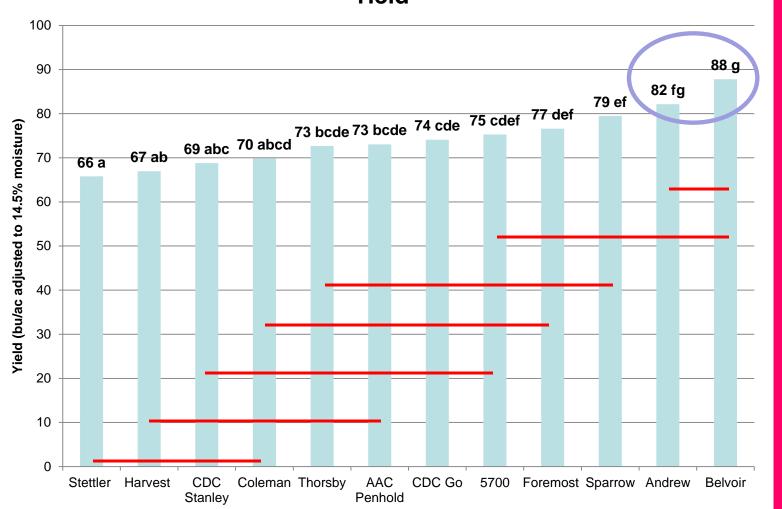
Cultivar	Class	2013 Acres	% of acres	Height	Lodging	% Yield of Check	Distributor
AC Foremost	CPS	360121	7.1%	73 cm	VG	116%	SeCan
AAC Penhold	CPS	new	new	72 cm	Excellent	110%	SeCan
5700PR	CPS	187008	3.7%	75 cm	VG	122%	CPS Canada
KWS Sparrow	GP	new	new	90 cm	VG	113%	KWS
KWS Belvoir	GP	new	new	88 cm	VG	111%	KWS
Harvest	HRS	785530	15.5%	84 cm	VG	102%	FP Genetics
CDC Go	HRS	550664	10.9%	83 cm	G	110%	Public
Stettler	HRS	793134	15.7%	84 cm	G	112%	SeCan
CDC Stanley	HRS	153063	3.0%	87 cm	G	113%	CPS Canada
Thorsby	HRS	new	new	97 cm	2.7	105%	Canterra
Coleman	HRS	new	new	92 cm	1.9	105%	Public -
AC Andrew	SWS	11355	0.2%	79 cm	VG	100%	SeCan

Alberta

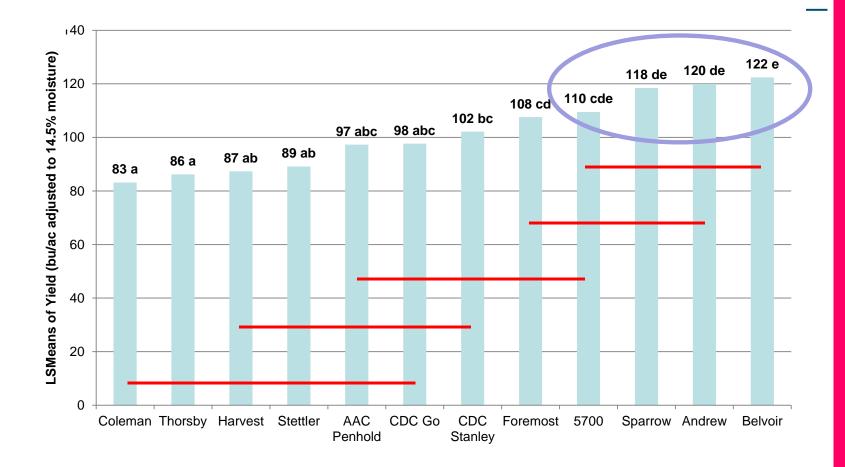

Yield Response to Cultivar

Belvoir was the top yielding variety at
4 of 5 locations
Sparrow was the 2nd top yielding

variety at 3 of 5 locations

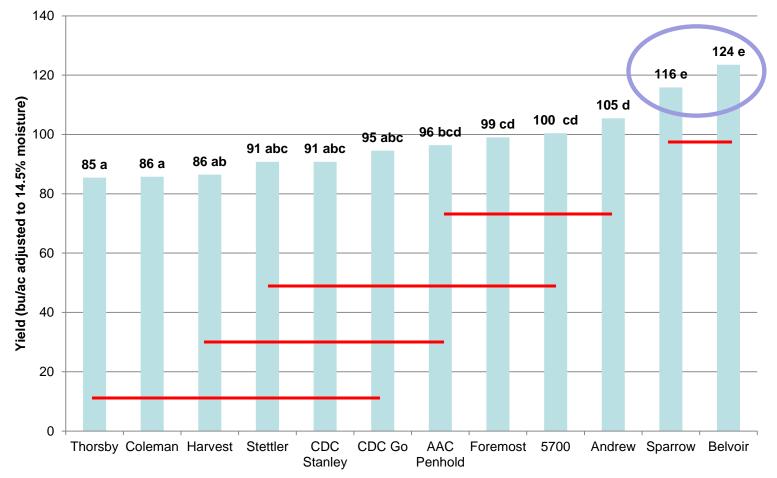

Coleman was the lowest yielding variety at 2 of 5 locations
Thorsby was the lowest yielding variety at 2 of 5 locations

Magrath 2014 - Wheat Genetics x Management Yield

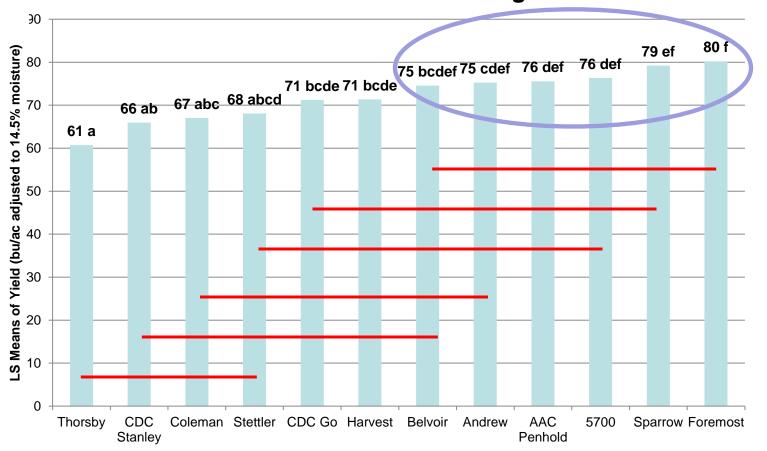


High River 2014 - Wheat Genetics x Management Yield

Alberta


supported with additional years of data **Preliminary Results - Trends must be**

Alberta


Killam 2014 - Wheat Genetics x Management Yield

Bon Accord 2014 - Wheat Genetics x Management Yield

Alberta

supported with additional years of data **Preliminary Results - Trends must be**

Falher 2014 - Wheat Genetics x Management Yield

Alberta

of data Preliminary Results - Trends must be supported with additional years

Belvoir – August 8th

Sparrow – August 8th

Thorsby – August 8th

Alberta

Yield Response to Cultivar x Management

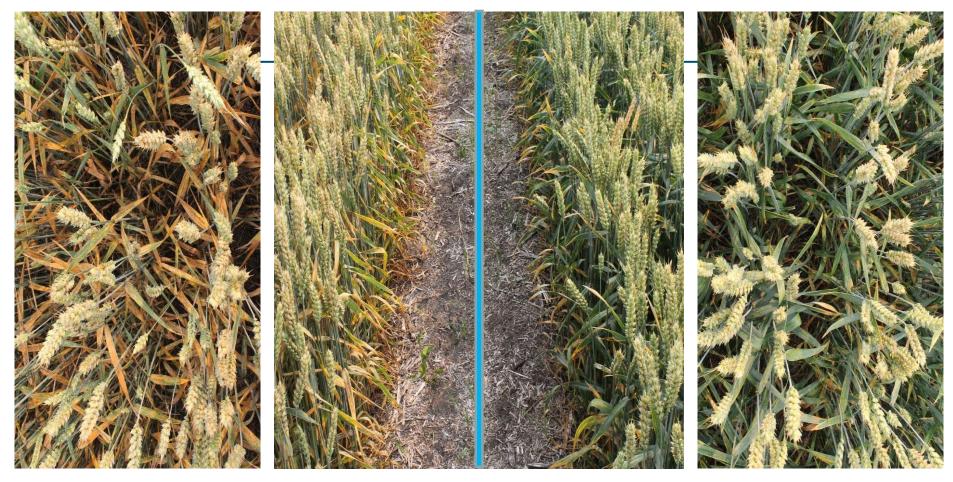
- 5700 and Foremost most often showed a yield response to advanced agronomic management

% Yield Increase with Advanced Management

Cultivar	Magrath	High River	Killam	Bon Accord	Falher	# of responsive sites
5700 (CPS)	18.2%	25.6%	8.8%	9.8%	5.6%	4
Foremost (CPS)	26.2%	36.4%	14.4%	12.9%	1.1%	4
Penhold (CPS)	7.7%	14.3%	14.8%	4.8%	-0.2%	3
Belvoir (GP)	9.6%	11.8%	8.3%	19.3%	-4.3%	3
Sparrow (GP)	8.3%	25.0%	10.4%	6.6%	-4.7%	3
Andrew (SWS)	2.7%	18.9%	7.8%	11.7%	-1.2%	2
CDC Go (HRS)	7.4%	26.5%	16.0%	6.7%	2.6%	3
Coleman (HRS)	13.4%	12.8%	8.0%	17.2%	1.2%	3
Harvest (HRS)	10.2%	22.5%	10.0%	16.9%	2.7%	3
Stettler (HRS)	6.0%	16.2%	28.8%	5.0%	-1.3%	2
Thorsby (HRS)	4.5%	21.4%	6.6%	11.2%	2.5%	2
CDC Stanley (HRS)	6.4%	12.0%	10.6%	6.8%	6.5%	3
Average	9.9%	19.4%	11.7%	10.8%	0.7%	4

Preliminary Results - Trends must be supported with additional years of data

Belvoir @ Bon Accord, Aug 14, 2014



	Standard Ag	ronomy	Advanced A	gronomy
Yield (bu/acre)	113 bu/acre	А	134 bu/acre	В
Height (cm)	80 cm	А	68 cm	В
Lodging	0	NS	0	NS
NDVI	0.50	А	0.58	В

Alberta

Preliminary Results - Trends must be supported with additional years of data

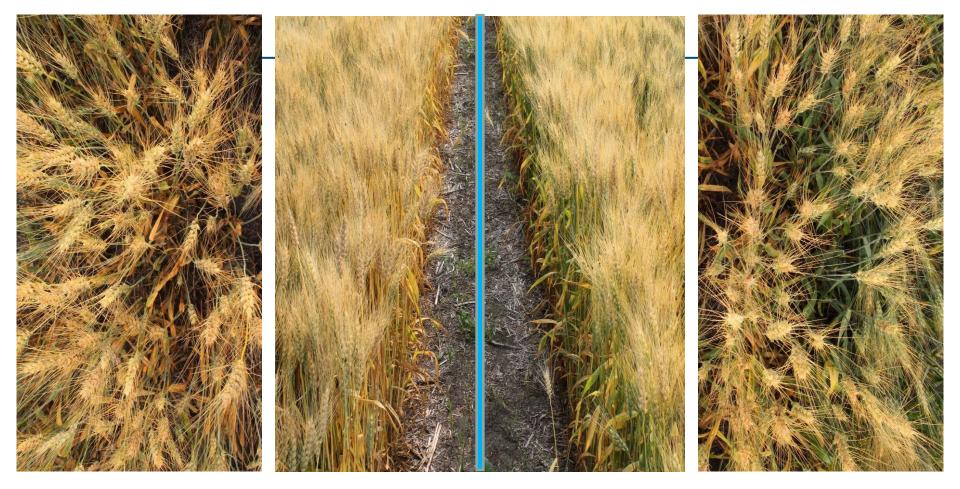
Belvoir @ Bon Accord, Aug 14, 2014

Standard Agronomy

Advanced Agronomy

Alberta

5700 @ Bon Accord, Aug 14, 2014



	Standard Ag	ronomy	Advanced Ag	gronomy
Yield (bu/acre)	96 bu/acre	А	105 bu/acre	В
Height (cm)	77 cm	А	75 cm	А
Lodging	10	А	5	А
NDVI	0.45	А	0.51	В

Alberta

Preliminary Results - Trends must be supported with additional years of data

5700 @ Bon Accord, Aug 14, 2014

Standard Agronomy

Advanced Agronomy

Alberta

Barley Stacked Management (comparing 64 management practices)

Yield Response

Comparing 64 management practices

UAN C	Control	ccc	Flag Fungicide CCC	Late Fungicide CCC	Dual Fungicide CCC	Flag Fungicide	Late Fungicide	Dual Fungicide	Control	ccc	Flag Fungicide CCC	Late Fungicide CCC	Dual Fungicide CCC	Flag Fungicide	Late Fungicide	Dual Fungicide
	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants
	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164
			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide
UAN B	Control	ccc	ccc	ccc	CCC				Control	ccc	ccc	ccc	ccc			
	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants
	100	101	105	100	107	100	100									
	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148
			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide
UAN A	Control	ccc	ccc	ccc	ccc				Control	ccc	ccc	ccc	ccc			
	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants
	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide			Flag Fungicide	Late Fungicide	Dual Fungicide	Flag Fungicide	Late Fungicide	Dual Fungicide
	Control	CCC	CCC	CCC	CCC				Control	CCC	CCC	CCC	CCC			
	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	22 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants	33 plants
	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116

Alberta

Yield Targets for: Standard & Advanced Agronomic Management

	Magrath	High River	Killam	Bon Accord	Falher
Yield Target			bu/acre		
Feed Barley 1.0x (Standard)	110	80	100	86	81
Feed Barley 1.25x (Advanced)	138	100	125	107	101
Feed Barley 1.5x (Advanced)	165	120	150	128	121
Malt Barley 1.0x (Standard)	110	70	90	97	83

Fertilizer Applied at Seeding - Feed Barley

Location	Ν	P ₂ O ₅	K ₂ 0	S	Cu
Magrath	110 Ibs N/ac* 100 lbs N/ac applied in fall 2013 10 lbs N/ac applied at seeding	49 lbs P ₂ O ₅ /ac	n/a	n/a	n/a
High River	85 lbs N/ac	22 lbs P ₂ O ₅ /ac	n/a	n/a	n/a
Killam	116 lbs N/ac	20 lbs P ₂ O ₅ /ac	20 lbs K ₂ O/ac	5 lbs S/ac	n/a
Bon Accord	79 lbs N/ac	45 lbs P ₂ O ₅ /ac	20 lbs K ₂ O/ac	n/a	n/a
Falher	97 lbs N/ac	50 lbs P ₂ O ₅ /ac	20 lbs K ₂ O/ac	20 lbs S/ac	n/a

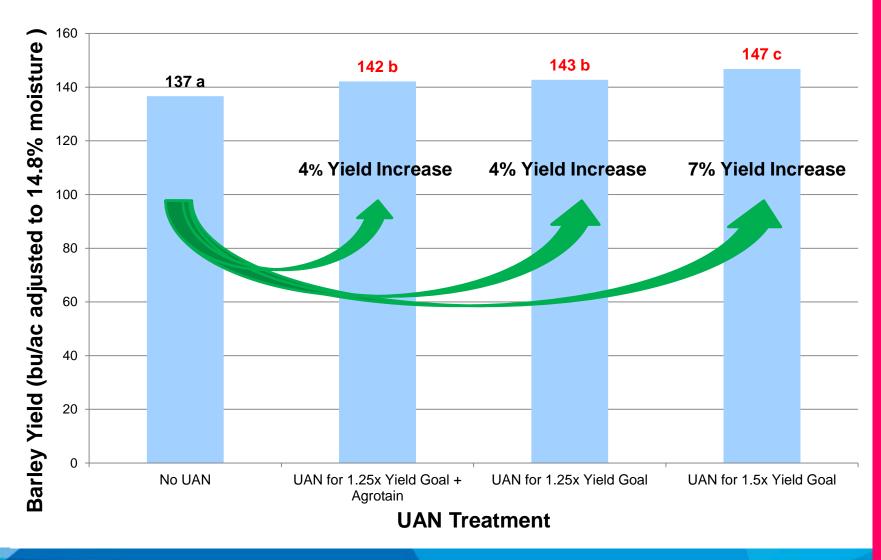
Barley Stacked Management – Yield Response

comparison of 64 different management practices

	Magrath	High River	Killam [†]	Bon Accord*	Falher
Average Yield	142 bu/ac	105 bu/ac	144 bu/ac	149 bu/ac	94 bu/ac
			ANOVA F tes	st	
UAN	<0.0001	<0.0001	0.0009	0.0155	0.0464
Treatment [‡]	<0.0001	<0.0001	0.1803	0.4941	0.0365
UAN * Treatment [‡]	0.9967	0.8065	1.0000	1.0000	1.0000
			Contrast <i>F</i> te	st	
No UAN vs UAN	<0.0001	<0.0001	0.0433	0.0338	0.2926
22 vs 33 plants/sqft	0.4451	0.9754	0.2603	0.4572	<0.0001
No PGR vs PGR	0.0126	<0.0001	0.0176	0.4575	0.0308
No Fungicide vs Fungicide	<0.0001	0.0001	0.9932	0.2310	0.8509
CV %	5.1%	9.6%	16.0%	11.5%	14.3%

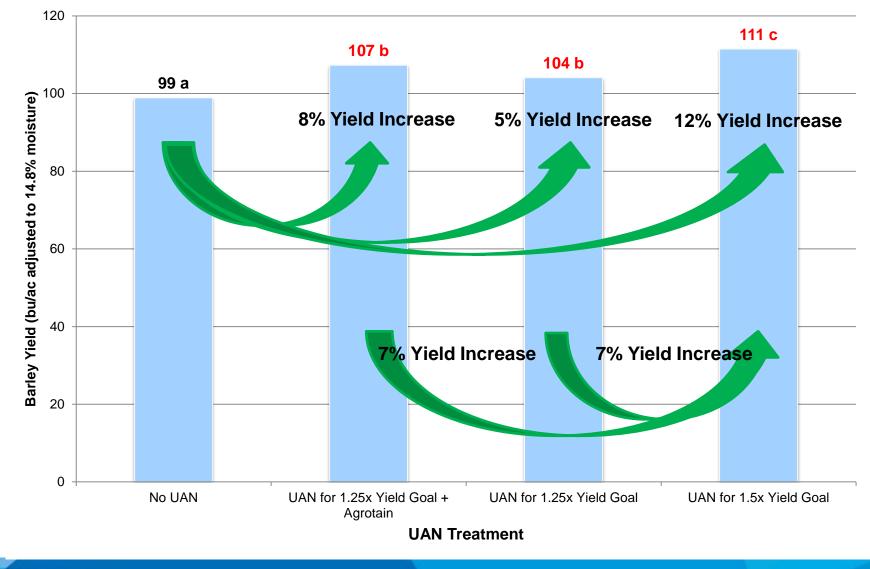
[†] Due to soil variability, data was run with a covariate of soil depth (P = 0.0166) for each individual plot [‡]Treatment = the 16 Seeding Rate x PGR x Fungicide treatment combinations

* Note: Yield seems high given amount of precipitation, but field of *Meredith* malt barley surrounding research plots yielded 102 bu/acre with only 50 lbs N fertilizer per acre. Research plots at Bon Accord received a base N fertilizer rate of 79 lbs N fertilizer per acre.

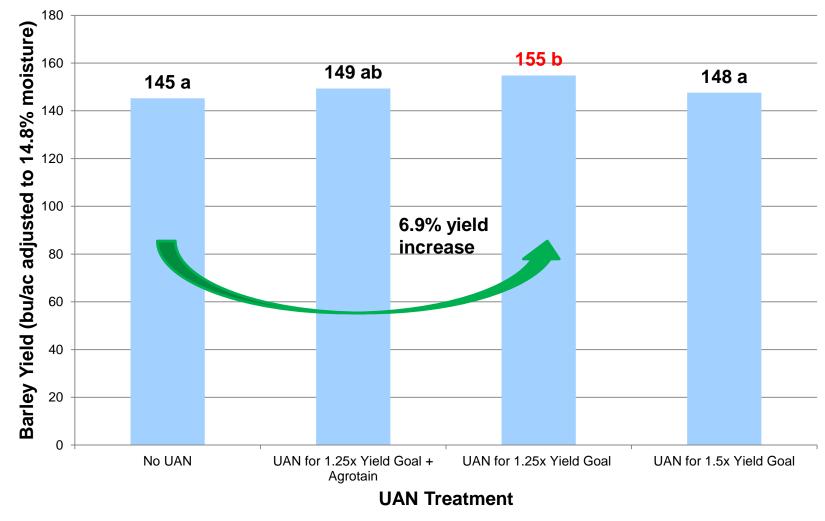

Barley Stacked Management (comparing 64 management practices)

Yield Response to UAN

Positive Yield Response at 4 of 5 sites (Magrath, High River, Bon Accord and Falher)


Magrath Barley Stacked – 2014 UAN Treatment Effect on Yield

of data - Trends must be supported with additional years **Preliminary Results**


High River Barley Stacked - 2014 UAN Treatment Effect on Yield

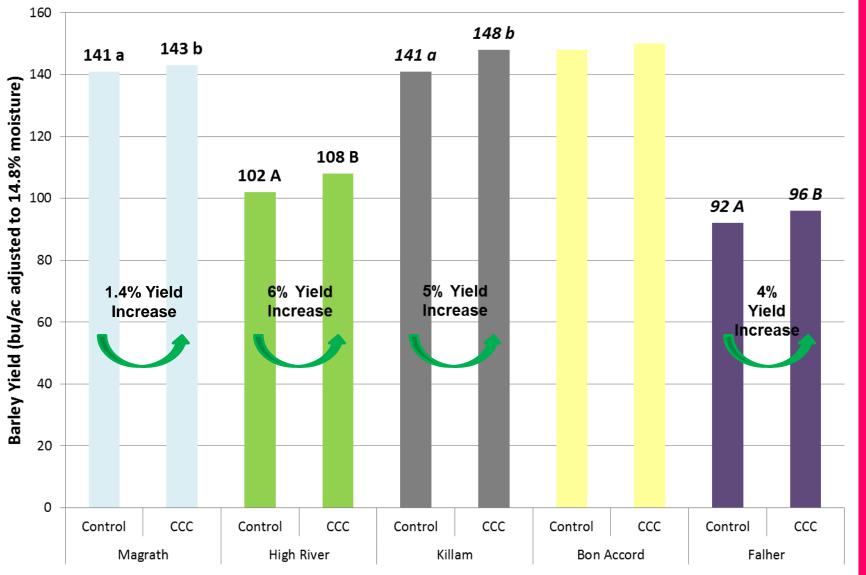
Alberta

of data Preliminary Results - Trends must be supported with additional years

Bon Accord Barley Stacked Yield - 2014 UAN Treatment Effect on Yield

of data - Trends must be supported with additional years **Preliminary Results**

Alberta


Barley Stacked Management

Yield Response to PGR

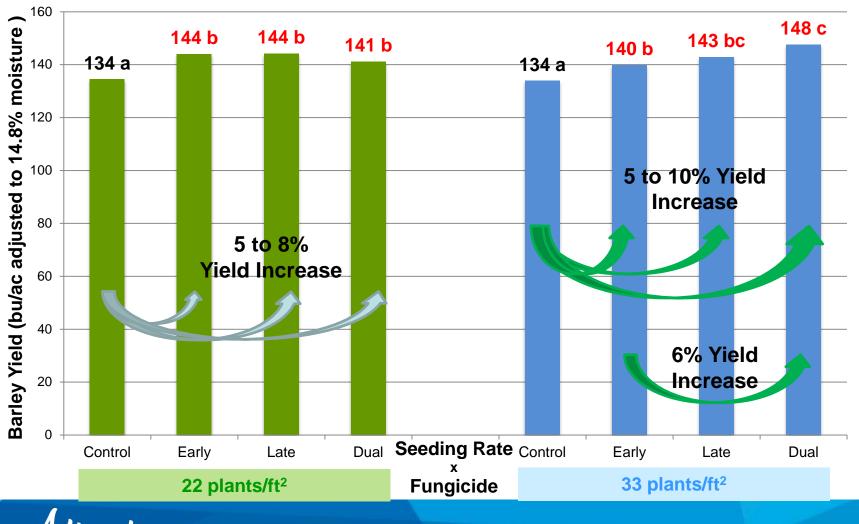
Positive Yield Response at 4 of 5 sites Magrath, High River, Killam and Falher

Barley Stacked 2014 - Yield Response to PGR

supported with additional years of data Preliminary Results - Trends must be

Alberta

Barley Stacked Management


Yield Response to Seeding Rate x Fungicide Treatments

Positive Yield Response to Fungicide: Magrath and High River

Magrath- 2014 Seeding Rate x Fungicide Effect on Yield

A12/2014

Alberta

Barley Stacked Management Trends

•UAN

4-7% yield increase with 30 lbs N/ac @ 3 sites
7-12% yield increase with 60 lbs N/ac @ 2 sites

Barley Stacked Management Trends

• PGR

- 1.4 6% yield increase with CCC
- Generally small yield increases, no yield decreases
- Maybe cultivar specific

Barley Stacked Management Trends

Fungicide

- Significant response at only 2 of 5 sites
- Single fungicide application increased yields by 5 10%
- Smaller yield responses on barley (vs. wheat) maybe cultivar dependent

Barley Genetics x Management

Yield Response

Standard Verses Advanced Management

Standard Agronomic Management

	<u> </u>	
Product	Rate	Timing
Supplemental UAN	n/a	Only N applied at seeding for area average yield goals
PGR	n/a	n/a
Foliar Fungicide	n/a	n/a

Advanced Agronomic Management

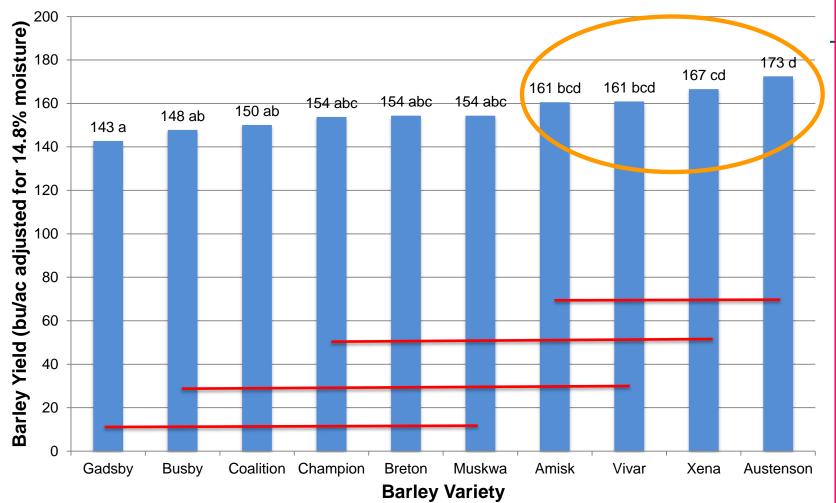
Product	Rate	Timing
Supplemental UAN	30 lbs N/ac	Just prior to GS 30 (just before elongation). June 13 th in Bon Accord
PGR - Manipulator	0.92 L/ac	GS 30-31. June 18 th in Bon Accord
1 st Foliar Fungicide Twinline	202 mL/ac	GS 39 Flag leaf fully unrolled. July 2 nd , Bon Accord
2 nd Foliar Fungicide Prosaro	320 mL/ac	2 weeks later . July 15 th , Bon Accord

Alberta

10 Barley Cultivars Tested

	Cultivar	Class	2013 Acres	% of acres	Height	Lodging	% Yield of Check	Distributor
1	Amisk	Feed - 6 row	new	new	74 cm	VG	similar to Vivar	SeCan
2	Vivar	Feed - 6 row	9182	0.4%	74 cm	VG	110%	SeCan
3	Gadsby	Feed - 2 row	4881	0%	83 cm	F	112%	SeCan
4	CDC Austenson	Feed - 2 row	229211	10%	78 cm	G	112%	SeCan
5	Xena	Feed - 2 row	461104	20%	78 cm	G	112%	CPS Canada
6	Champion	Feed - 2 row	317403	14%	77 cm	G	113%	CPS Canada
7	CDC Coalition	Feed - 2 row	88942	4%	74 cm	G	110%	Canterrra
8	Breton	Feed - 6 row	new	new	81 cm	F	106%	Canterra
9	Muskwa	Feed - 6 row	new	new	73 cm	G	105%	FCDC
10	Busby	Feed - 2 row	23393	1%	78 cm	G	104%	Mastin Seeds

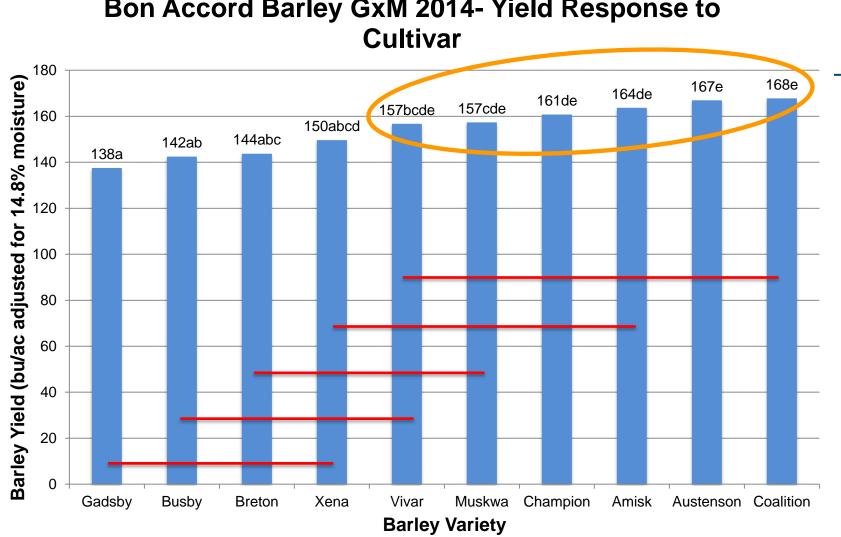
Alberta


Alberta

Yield Response to Cultivar

CDC Coalition was the top yielding variety at 2 of 4 locations
Vivar was the among the top yielding varieties at 3 of 4 locations

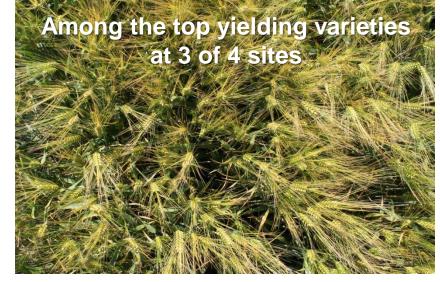
Busby was the lowest yielding variety at 3 of 5 locations
Gadsby was the lowest yielding variety at 2 of 5 locations



Aberta

Killam Barley GxM 2014- Yield Response to Cultivar

of data Preliminary Results - Trends must be supported with additional years


Aberta

Bon Accord Barley GxM 2014- Yield Response to

of data Preliminary Results - Trends must be supported with additional years

CDC Coalition – August 12th

Vivar – August 12th

Gadsby – August 12th

Busby – August 12th

Alberta

Yield Response to Cultivar x Management

- Breton
- Xena
- CDC Coalition
- CDC Austenson

most often showed a yield response to advanced agronomic management

% Yield Increase with Advanced Management

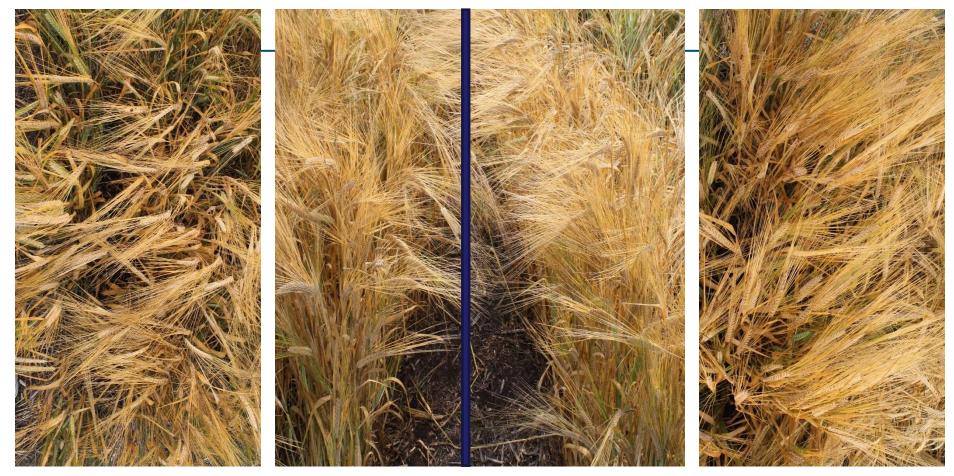
Cultivar	Magrath	High River	Killam	Bon Accord	Falher	# of positive site responses
Breton	12.8 [†]	11.9	10.2	10.7	-2.3	4
Xena	31.4	16.3	12.6	5.2	2.8	3
CDC Coalition	27.6	14.3	8.5	12.0	-2.2	3
CDC Austenson	5.6	21.5	13.0	13.1	-1.1	3
Amisk	15.5	26.1	-10.2	1.1	0.0	2
Busby	16.3	20.5	3.4	9.4	1.5	2
Gadsby	10.4	12.4	-3.8	3.4	0.7	2
Muskwa	10.2	11.5	0.4	3.3	3.2	2
Champion	0.3	12.6	7.2	10.0	-2.0	2
Vivar	7.1	15.2	5.4	5.4	7.5	1
Average	13.7	16.2	4.7	7.4	0.8	

[†] Values highlighted in red indicate a significant yield difference between standard & advanced management

Preliminary Results - Trends must be supported with additional years of data

Aberta

CDC Austenson @ Bon Accord – August 12, 2014



	Standard Agronomy		Advanced Agronomy	
Yield (bu/acre)	157 bu/ac	А	177 bu/ac	В
Height (cm)	77 cm		78 cm	
Lodging	37		38	
NDVI	0.68		0.71	
Head Length	7.6 cm		8.5 cm	

Alberta

of data - Trends must be Preliminary Results - Trends m supported with additional years

CDC Austenson

Standard Agronomy

Advanced Agronomy

Alberta

Barley Genetics x Management Trends

Advanced Agronomy

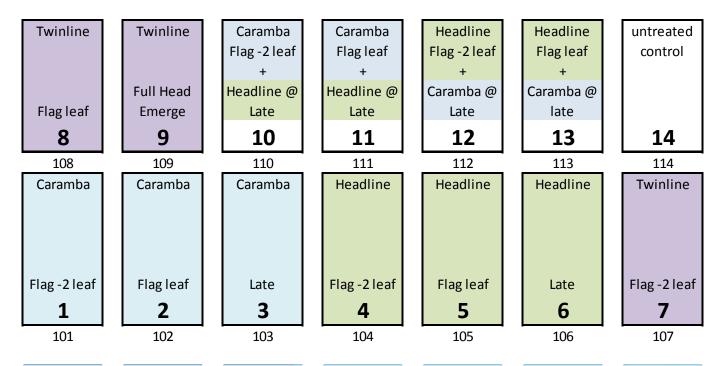
Summary

- CDC Coalition and Vivar were among the top yielding varieties
- Busby and Gadsby were among the lowest yielding varieties
- Advanced management significantly increased yields at 4 of 5 sites
- Advanced management increased yields from 5-16%

Standard Agronomy

CDC Austenson at Killam

Malt Barley Fungicide Trial


Yield Response

14 Treatments:

- 3 fungicides (Caramba, Headline, Twinline)
- 3 spray timings (Flag -2, Flag, Late)
- Dual applications
- Untreated control

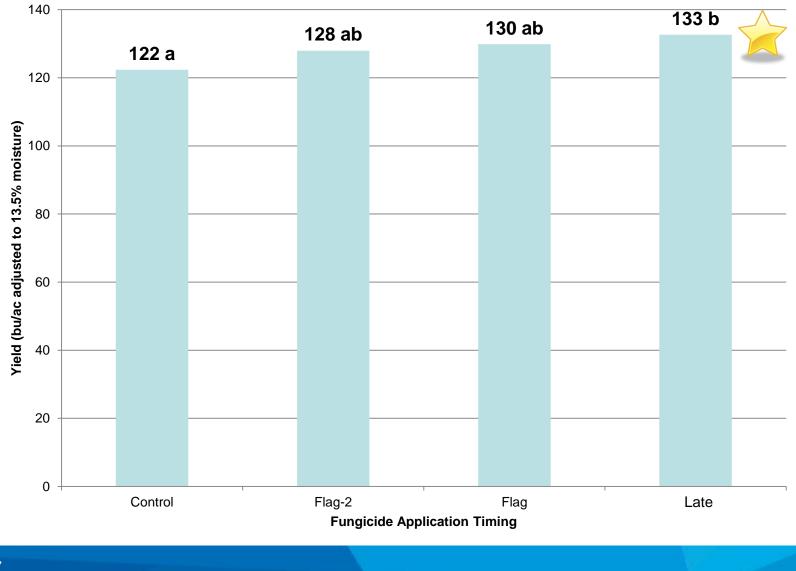
Alberta

AC Metcalfe

Disease

AC Metcalfe Disease Resistance Ratings

Common Root Rot Resistance	Fair
False and Covered Smut Resistance	Fair
Fusarium Head Blight Tolerance	Fair
Loose Smut Resistance	Very Good
Net Blotch (Net Form) Resistance	Very Poor
Net Blotch (Spot Form) Resistance	Fair
Scald Resistance	Very Poor



Yield Response to Fungicide & Application Timing

Positive Yield Response to Fungicide at 4 of 5 sites Timing of Fungicide mattered at 1 of 5 locations

Bon Accord 2014 - Malt Barley Fungicide Yield

supported with additional years of data Preliminary Results - Trends must be

A1/2/2014

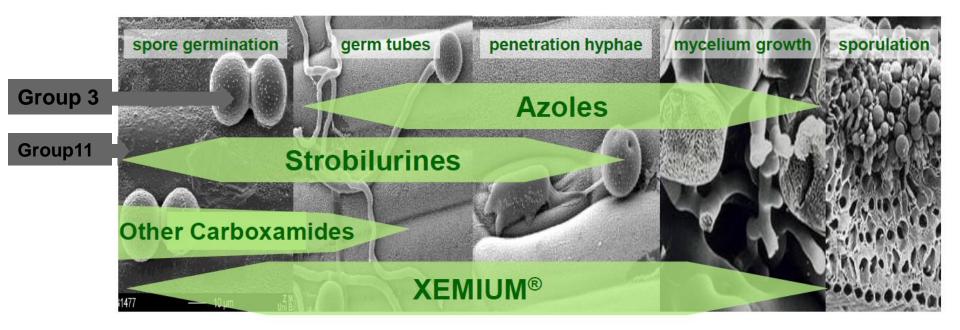
Yield Response to Different Fungicide Groups

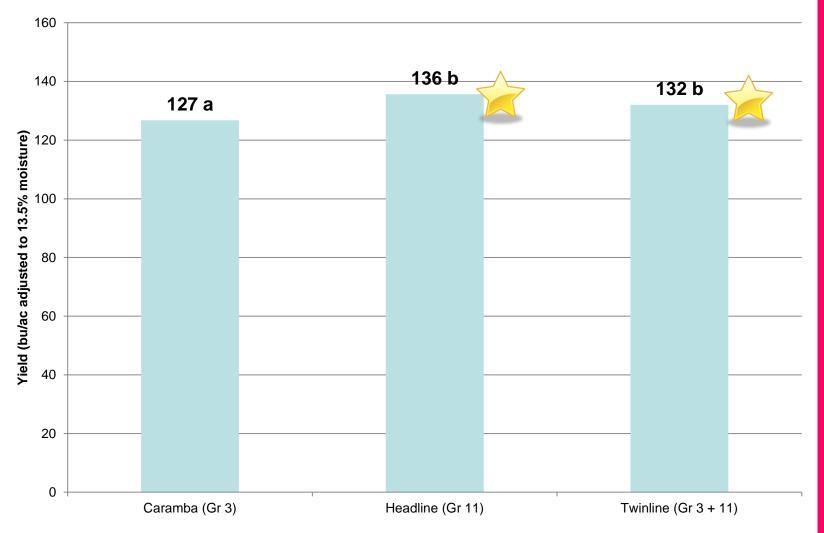
Yields Differed Depending on Type of Fungicide at 3 of 5 sites

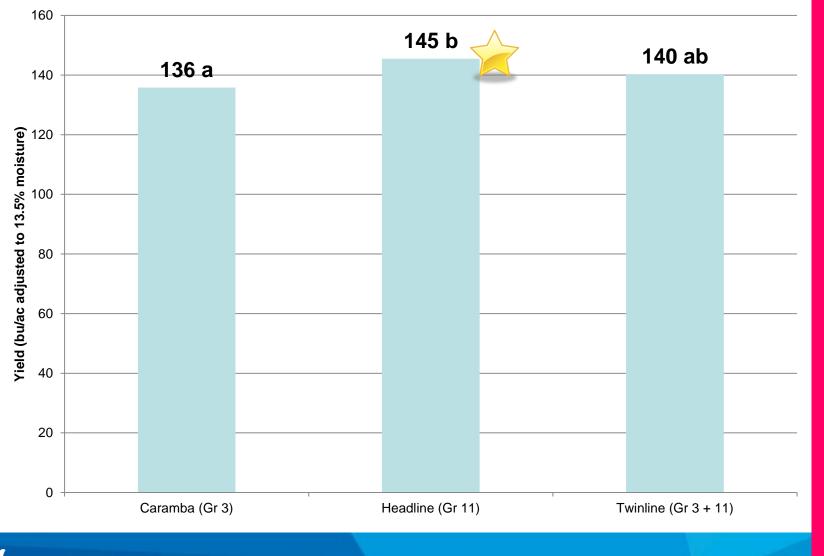
Fungicide Groups Tested in Study

Fungicide	Group	Active	Rate	
Caramba	Group 3	Metconazole 90 g/L	283 mL/acre 699 mL/ha	
Headline	Group 11	Pyraclostrobin 250g/L	240 mL/acre 593 mL/ha	
Twinline	Group 3+11	Metconazole 90 g/L + Pyraclostrobin 130 g/L	202 mL/ac 499 mL/ha	
		Note: the reduced concentration of		

Note: the reduced concentration of pyraclostrobin vs Headline




The Multiple Modes of Action


Activity on Multiple Stages of the Fungus

Magrath 2014 - Malt Barley Fungicide Yield

Killam 2014 - Malt Barley Fungicide Yield

supported with additional years of data **Preliminary Results - Trends must be**

data must **o** additional years Trends Results with Preliminary upported

Alberta

Malt Barley Fungicide Trends

Summary

- Fungicide increased yields by 6-13% at 4 of 5 sites
- Flag or late fungicide applications tended to be better
- Group 11 (Headline) occasionally performed better than Group
 3. However this product has a risk of developing resistance

- Data Analysis
 - -Biomass
 - Lodging
 - Disease
 - -NDVI
 - -Heights
 - -Maturity
- Economic Analysis

- Analyze samples for:
 - -CGC Grade
 - -TWK
 - -NIR protein
 - -Baking quality (HRS)
- Repeat experiments in 2015 and 2016

Alberta

Wheat Stacked Management Trends

•Summary

- In high moisture environments:
 - UAN resulted in small (4-11%) yield increases
 - PGR B resulted in small (4-8%) yield increases
 - Single and Dual fungicide resulted in large (28-48%) yield increases
- In dry environments:
 - A high rate of UAN reduced yields
 - The PGR CCC resulted in a 7-8% yield decrease
 - Fungicides increased yields by 6-15%

Alberta

Barley Stacked Management Trends

Summary

- Based on this data set:
 - UAN generally increased yield
 - PGR occasionally increased yield
 - Fungicide response was seen at 2 sites
 - Smaller yield responses on barley (vs. wheat) maybe cultivar dependent
 - An economic analysis needs to be conducted to determine profitability of these practices

data must **o** additional years Trends Results with Preliminary upported

Alberta

Malt Barley Fungicide Trends

Summary

- Fungicide increased yields by 6-13% at 4 of 5 sites
- Flag or late fungicide applications tended to be better
- Group 11 (Headline) occasionally performed better than Group
 3. However this product has a risk of developing resistance

This work would not have been possible without technical support from:

- **Doon Pauly's Technical Staff**: Allan Middleton, Pat Pfiffner, Chris Hietamaa, Darryle Thiessen, Colin Enns
- Robyne Bowness' Technical Staff: Trina Dubitz, Joshua Beaucheane
- CDCN/Barrhead Technical Staff: Jackie Tieulie, Sue Jess, Alex Fedko, Brandi Kelly, Suzie Spearin, Emily Flock, Chelsea Jaeger, Boris Henriquez, Mathew Webster, Laurel Perrott
- SARDA: JP PettyJohn, Kabal Gill, summer staff

Professional Support from:

• Bill Chapman, Rong-Cai Yang, Mark Olson, Darcy Driedger, Tabitha MacKinnon, Elsie Gross, Cam Stevenson, Linda Hall, Kelly Kelly

Alberta